

What neural mechanisms explain spontaneous thought generation and the subjective experience of thoughts arising in consciousness?

Spontaneous thoughts arise through temporal progression from preconscious memory processes in temporal-parietal regions to conscious awareness supported by prefrontal networks.

Abstract

Studies report that spontaneous thoughts emerge from a sequence of neural events. Early activity in the medial temporal lobe, parietal cortex, and default mode areas—observed up to two seconds before thought onset (Ellamil et al.; Girn et al.; Kim et al.)—appears to enable memory retrieval and associative processing. In contrast, medial and lateral prefrontal regions, along with anterior cingulate cortex, become engaged at or after thought onset, supporting elaboration and conscious awareness (Smith et al.; Christoff et al.). These investigations also distinguish unaware from aware mind-wandering by linking temporal lobe activation to unconscious thought and prefrontal engagement to conscious appraisal. Furthermore, several studies note that self-relevant content and individual traits modulate activity in these networks. Together, the findings describe a temporal progression—from preconscious memory and associative processes to the integrated engagement of default, executive, and salience systems—that underlies both the emergence and the subjective experience of spontaneous thought.

Paper search

Using your research question "What neural mechanisms explain spontaneous thought generation and the subjective experience of thoughts arising in consciousness?", we searched across over 126 million academic papers from the Semantic Scholar corpus. We retrieved the 50 papers most relevant to the query.

Screening

We screened in sources that met these criteria:

- **Neural Methods:** Does the study investigate neural correlates or mechanisms of spontaneous thought using neuroimaging techniques (fMRI, EEG, MEG, or PET)?
- **Population:** Does the study include healthy adult participants (18+ years) without clinical conditions affecting thought processes?
- **Study Design:** Is this an empirical study with primary data collection that includes both objective neural measures and subjective experience reports?
- **Thought Process Focus:** Does the study examine conscious awareness and thought emergence processes?
- **Spontaneous Nature:** Does the study investigate spontaneous/internally-generated thoughts rather than solely externally-triggered thoughts or stimuli?
- **Empirical Evidence:** Does the study include empirical data rather than being purely theoretical or computational?
- **Mechanism Focus:** Does the study examine thought generation mechanisms rather than focusing solely on thought content?

We considered all screening questions together and made a holistic judgement about whether to screen in each paper.

Data extraction

We asked a large language model to extract each data column below from each paper. We gave the model the extraction instructions shown below for each column.

- **Study Design Type:**

Identify the primary research design used in the study. Look in the methods section for explicit description of the study design. Categorize as:

- Functional Magnetic Resonance Imaging (fMRI) study
- Neuroimaging study
- Experimental cognitive neuroscience study
- Experience sampling study

If multiple design types apply, list all in order of prominence. If unclear, note "design not clearly specified".

- **Neuroimaging Technique and Parameters:**

Extract specific details about neuroimaging methodology from methods section:

- Imaging modality (e.g., 3T fMRI)
- Scanning parameters (e.g., TR, TE, voxel size)
- Specific neuroimaging analysis techniques used

Be precise and include exact numerical values when reported. If any parameters are missing, note "not reported".

- **Participant Sample Characteristics:**

Extract the following participant details:

- Total number of participants
- Mean age (and standard deviation)
- Gender distribution
- Specific expertise or characteristics (e.g., "experienced mindfulness practitioners")

If any information is not reported, use "NR" (not reported). For percentages, include both percentage and absolute numbers.

- **Experimental Conditions and Cognitive Tasks:**

Describe the specific conditions or tasks used to elicit or study spontaneous thoughts:

- Detailed description of experimental paradigm
- Cognitive demands of tasks
- Method of tracking or measuring spontaneous thought emergence

Include precise details about how spontaneous thoughts were identified or measured. If multiple conditions exist, describe each separately.

- **Key Neural Mechanisms and Brain Regions:**

Extract specific neural mechanisms and brain regions associated with spontaneous thought:

- Specific brain regions activated
- Timing of neural recruitment

- Relative activation levels
- Functional interpretation of neural activity

Prioritize direct quotes or precise statistical findings about neural mechanisms. If statistical details are complex, summarize key findings and note original statistical parameters.

- **Primary Research Findings:**

Summarize the core findings related to neural mechanisms of spontaneous thought:

- Primary conclusions about thought generation
- Unique insights into neural dynamics
- Theoretical implications of the findings

Focus on findings directly addressing the mechanism of spontaneous thought generation. Capture the conceptual contribution beyond raw data.

Results

Characteristics of Included Studies

Study	Study Design	Brain Regions Studied	Measurement Methods	Key Findings	Full text retrieved
Ellamil et al., 2016	Functional magnetic resonance imaging (fMRI), neuroimaging, experimental cognitive neuroscience	Medial temporal lobe, inferior parietal lobule, medial prefrontal cortex, temporopolar cortex, mid-insular cortex, lateral prefrontal cortex, dorsal anterior cingulate cortex	fMRI (parameters: no mention found), introspective reports by mindfulness practitioners	Temporal differences in neural recruitment: medial temporal and parietal regions peak before thought onset; prefrontal and cingulate regions peak with/after thought onset	No
Smith et al., "Mind-wandering with and without awareness"	Functional magnetic resonance imaging (fMRI), experimental cognitive neuroscience, neuroimaging, experience sampling	Temporal lobe, prefrontal cortex	fMRI (parameters: no mention found), thought sampling during engaging task	Temporal lobe activation during unaware mind-wandering; prefrontal cortex during aware mind-wandering	No

Study	Study Design	Brain Regions Studied	Measurement Methods	Key Findings	Full text retrieved
Christoff et al., 2009	Functional magnetic resonance imaging (fMRI), experience sampling	Default network (medial prefrontal, posterior cingulate, temporal, parietal, executive network (dorsal anterior cingulate cortex, dorsolateral prefrontal cortex), temporopolar cortex, temporal gyri, insula, caudate)	3T fMRI (detailed parameters), experience sampling during sustained attention to response task, statistical parametric mapping (SPM5) analysis	Mind wandering involves parallel recruitment of default and executive networks, especially when meta-awareness is absent	Yes
O'Callaghan et al., 2015	Experience sampling, neuroimaging	Default network: temporal lobe, posterior cingulate cortex, dorsal medial prefrontal cortex	Resting-state fMRI (parameters: no mention found), novel thought sampling task	Mind wandering frequency associated with specific patterns of default network connectivity	No
McGuire et al., "Brain activity during stimulus independent thought"	Positron emission tomography (PET), neuroimaging, experimental cognitive neuroscience	Medial prefrontal region	PET with H ₂ (15)O (parameters: no mention found), self-report of stimulus-independent thoughts during tasks	Medial prefrontal activation correlates with stimulus-independent thoughts	No

Study	Study Design	Brain Regions Studied	Measurement Methods	Key Findings	Full text retrieved
Raij et al., 2017	3T functional magnetic resonance imaging (fMRI), experience sampling, neuroimaging, experimental cognitive neuroscience	Cortical midline structures, anterior cingulate cortex, visual cortex, dorsomedial prefrontal cortex, lingual gyrus, left inferior frontal gyrus	3T fMRI (detailed parameters), experience sampling, SPM12 analysis	Dorsomedial prefrontal cortex and cortical midline structures support spontaneous thinking; modality-specific activations observed	Yes
Dumontheil et al., 2010	3T functional magnetic resonance imaging (fMRI), neuroimaging, experimental cognitive neuroscience	Lateral rostral prefrontal cortex, superior parietal cortex, temporal regions, insula, inferior parietal lobule	3T fMRI (detailed parameters), tasks with varying cognitive demand, SPM2 analysis	U-shaped rostral prefrontal cortex recruitment: active in both low (mind-wandering) and high (goal/subgoal integration) demand conditions	Yes
Kim et al., 2021	3T functional magnetic resonance imaging (fMRI), neuroimaging, experimental cognitive neuroscience, experience sampling	Medial prefrontal cortex, medial temporal subcortical structures, hippocampus, amygdala, somatomotor network, default mode network	3T fMRI (detailed parameters), free association-based thought sampling, single-trial general linear model	Self-generated concepts engage medial prefrontal and medial temporal structures; neural representations of valence become more person-specific with self-relevance	Yes

Study	Study Design	Brain Regions Studied	Measurement Methods	Key Findings	Full text retrieved
Godwin et al., 2016	Electroencephalography (EEG), experimental cognitive neuroscience, neuroimaging	Parietal region (via Fz, Cz, Pz, F3, F4, P3, P4 electrodes)	EEG (parameters: no mention found), concentration exercise, button press for thought onset	Increased alpha correlation in parietal region for internal thoughts; supports distinct networks for internal/external awareness	No
Girn et al., 2017	High-density electroencephalography (EEG), experimental cognitive neuroscience, neuroimaging	Medial prefrontal cortex, posterior cingulate cortex, dorsal anterior cingulate cortex, right insula, left superior temporal gyrus, dorsolateral prefrontal cortex	High-density EEG (60 electrodes, detailed parameters), within-subjects yoked-control design, independent component analysis, wavelet, phase synchrony	Sequential recruitment from default/salience networks to executive regions during spontaneous thought; detailed temporal dynamics mapped	Yes

Summary of study characteristics:

- Brain regions most frequently studied:
 - Medial prefrontal cortex: 5 studies
 - Temporal lobe/regions: 5 studies
 - Parietal cortex (including inferior/superior): 3 studies
 - Cingulate cortex (anterior/dorsal/posterior): 4 studies
 - Insula: 4 studies
 - Lateral/rostral prefrontal cortex (including dorsolateral prefrontal cortex): 2 studies
 - Default mode network: 2 studies
 - Executive and salience networks: 1 study each
 - Other regions (each in 1 study): hippocampus, amygdala, somatomotor network, visual cortex, caudate, lingual gyrus, superior temporal gyrus
- Measurement methods:
 - Functional magnetic resonance imaging (fMRI): 7 studies
 - Positron emission tomography (PET): 1 study
 - Electroencephalography (EEG): 2 studies
 - Experience or thought sampling (including introspective/self-report): 7 studies
 - Task-based paradigms: 4 studies

- Resting-state fMRI: 1 study
- Statistical parametric mapping (SPM) analysis: 3 studies
- Independent component analysis/wavelet/phase synchrony: 1 study
- Button press for thought onset: 1 study
- Free association-based sampling: 1 study
- Key findings:
 - Temporal dynamics of neural recruitment: 3 studies
 - Network involvement (default, executive, salience): 3 studies
 - Awareness or meta-awareness effects: 2 studies
 - Modality-specific neural activations: 1 study
 - Person-specific neural representations: 1 study
 - Connectivity patterns within the default network: 1 study
 - Sequential recruitment of networks: 1 study
 - Support for spontaneous thought in specific regions: 1 study
 - Internal/external awareness network distinctions: 1 study
 - Medial prefrontal cortex involvement in spontaneous/self-generated thought: 2 studies
- Modalities not represented:
 - No studies using magnetoencephalography (MEG), near-infrared spectroscopy (NIRS), or other imaging modalities were found.
 - No studies focused exclusively on subcortical regions, except for one study each mentioning the hippocampus and amygdala.
 - No studies using only behavioral or non-neuroimaging methods were included in this table.

Neural Mechanisms of Spontaneous Thought

Temporal Dynamics of Neural Recruitment

Study	Early Neural Recruitment	Later Neural Recruitment	Timing/Sequence	Functional Interpretation
Ellamil et al., 2016	Medial temporal lobe, inferior parietal lobule (peak before thought)	Medial prefrontal, temporopolar, mid-insular, lateral prefrontal, dorsal anterior cingulate cortex (peak with/after thought)	Within one second to several seconds before/after thought onset	Early regions: inception; later regions: elaboration/metacognition
Smith et al.	Temporal lobe (unaware mind-wandering)	Prefrontal cortex (aware mind-wandering)	No mention found	Temporal lobe: unconscious; prefrontal: conscious thought

Study	Early Neural Recruitment	Later Neural Recruitment	Timing/Sequence	Functional Interpretation
Christoff et al., 2009	Default network (medial prefrontal, posterior cingulate, temporoparietal)	Executive network (dorsal anterior cingulate cortex, dorsolateral prefrontal cortex)	Immediately preceding probes	Parallel recruitment; strongest when unaware
O'Callaghan et al., 2015	No mention found	No mention found	No mention found	Default network connectivity underpins mind wandering
McGuire et al.	Medial prefrontal region	No mention found	No mention found	Self-initiated, stimulus-independent thought
Raij et al., 2017	Cortical midline, anterior cingulate, visual cortex	Dorsomedial prefrontal cortex	During mind-wandering	Dorsomedial prefrontal cortex: high-order abstract functions
Dumontheil et al., 2010	Lateral rostral prefrontal cortex, superior parietal cortex (low demand)	Lateral rostral prefrontal cortex, superior parietal cortex (high demand)	Contrasts between low/intermediate/high demand	Rostral prefrontal cortex: mind wandering and manipulation of self-generated thoughts
Kim et al., 2021	Visual cortex (early, ~3 seconds post-stimulus)	Medial prefrontal, medial temporal, hippocampus, amygdala	Transient increase, then decrease, then recovery	Autobiographical memory, emotion, self-relevance
Godwin et al., 2016	Parietal region (alpha correlation, less than 1 second before thought)	No mention found	Less than 1 second before thought onset	Internal vs. external awareness networks
Girn et al., 2017	Medial prefrontal cortex-posterior cingulate cortex (-2000 to -1500ms), left superior temporal gyrus-right insula-posterior cingulate cortex (-1500 to -1000ms)	Dorsolateral prefrontal cortex-medial prefrontal cortex (-1000 to -500ms), right insula-dorsolateral prefrontal cortex (last 500ms)	Sequential, sub-second bins	Progression: evaluative, salience, linguistic, executive, appraisal

Summary of temporal dynamics findings:

- Early neural recruitment:
 - Medial prefrontal cortex: 3 studies
 - Temporal lobe or medial temporal regions: 2 studies
 - Parietal regions (inferior, superior, or general): 3 studies
 - Default network involvement: 1 study
 - Posterior cingulate: 2 studies
 - Other regions (each in 1 study): temporoparietal, cortical midline, anterior cingulate, visual cortex, lateral rostral prefrontal cortex, left superior temporal gyrus, right insula
 - No mention found in 1 study
- Later neural recruitment:
 - Medial prefrontal cortex: 2 studies
 - Dorsal anterior cingulate cortex and dorsolateral prefrontal cortex: 2 studies each
 - Prefrontal cortex (general), executive network, temporopolar, mid-insular, lateral prefrontal, dorsomedial prefrontal, lateral rostral prefrontal cortex, superior parietal, medial temporal, hippocampus, amygdala, medial prefrontal cortex, right insula: each in 1 study
 - No mention found in 3 studies
- Timing/sequence:
 - Timing or sequence information was found in 7 studies
 - * 4 studies reported sub-second or millisecond-level timing of neural recruitment
 - * 3 studies described timing in relation to task events or cognitive demand
 - No mention found in 3 studies
- Studies specifying both early and later neural recruitment: 7 studies
- Studies without both early and later recruitment information: 3 studies

Network Interactions

Brain Network	Temporal Phase	Primary Function	Associated Experience
Default mode network (DMN)	Early to mid	Self-referential processing, autobiographical memory, semantic associations	Spontaneous thought inception, mind-wandering
Executive network	Mid to late	Cognitive control, manipulation of self-generated thoughts	Elaboration, metacognitive processing, goal/subgoal integration
Salience network	Early to mid	Bottom-up salience detection, affective valuation	Detection of salient internal/external cues, affective appraisal
Medial temporal lobe/parietal	Early	Memory retrieval, associative processing	Preconscious thought generation
Dorsomedial prefrontal cortex	Mid to late	High-order abstract functions, intentional mind-wandering	Abstract reasoning, intentional thought

Brain Network	Temporal Phase	Primary Function	Associated Experience
Parietal (alpha)	Pre-onset	Internal awareness	Internal thought generation

Distribution of network involvement:

- Temporal phase:
 - Pre-onset: 1 network
 - Early phase: 1 network
 - Early to mid phase: 2 networks
 - Mid to late phase: 2 networks
- Primary functions (each associated with 1 network):
 - Self-referential processing, autobiographical memory, semantic associations
 - Cognitive control and manipulation of self-generated thoughts
 - Bottom-up salience detection and affective valuation
 - Memory retrieval and associative processing
 - High-order abstract functions and intentional mind-wandering
 - Internal awareness
- Associated experiences (each linked to 1 network):
 - Spontaneous thought inception and mind-wandering
 - Elaboration, metacognitive processing, and goal/subgoal integration
 - Detection of salient internal/external cues and affective appraisal
 - Preconscious thought generation
 - Abstract reasoning and intentional thought
 - Internal thought generation

Thematic Analysis

Early Neural Precursors of Thought Generation

- Several studies (Ellamil et al., Girn et al., Kim et al.) report that the medial temporal lobe, parietal cortex, and early activity in the default mode network act as neural precursors to the subjective emergence of thought.
- These regions are implicated in memory retrieval and associative processing, as described in the included studies.
- The findings suggest that spontaneous thoughts, as reported in these studies, may arise from preconscious activation of memory and semantic networks.

Network-Level Integration and Thought Emergence

- Integration of the default mode, executive, and salience networks during spontaneous thought is a recurring theme.
- Christoff et al. and Dumontheil et al. provide evidence for parallel or U-shaped recruitment of these networks, with executive regions (such as the lateral rostral prefrontal cortex and dorsolateral prefrontal cortex) engaged both during mind-wandering and high-demand cognitive tasks.

- The transition from the default mode network to executive and salience networks appears, in these studies, to be important for the elaboration and conscious appraisal of thoughts.

Individual Differences in Thought Generation

- Kim et al. and studies using meditators (Ellamil et al., Girn et al.) report that individual differences—including self-relevance, affective traits, and introspective ability—modulate the neural dynamics of spontaneous thought.
- For example, Kim et al. found that neural representations of valence become more idiosyncratic with increased self-relevance.
- Studies with experienced meditators suggest distinct temporal patterns of neural recruitment, though these findings should be interpreted in light of the specialized populations studied.

Relationship Between Neural Activity and Subjective Experience

- Multiple studies (Smith et al., Christoff et al., Raji et al.) address the relationship between neural activity and subjective awareness of thought.
- These studies report that neural recruitment is often stronger during unaware mind-wandering.
- The distinction between internal and external sources of thought is reflected in distinct neural signatures, such as parietal alpha activity for internal thoughts (Godwin et al.).
- The subjective experience of thought emergence, as described in these studies, is closely tied to the dynamic interplay of awareness, network recruitment, and individual context.

Limitations

- The evidence base is limited by:
 - Incomplete reporting in some studies (with several studies only available as abstracts)
 - Moderate sample sizes
 - Use of specialized populations (such as meditators and older adults)
 - Diversity of paradigms and neuroimaging modalities, which complicates direct comparison
 - Lack of full-text access for some studies, which precludes comprehensive quality assessment
- Despite these limitations, the convergence of findings across different methodologies strengthens the overall synthesis of the included studies.

References

Byeolah Kim, J. Andrews-Hanna, Jihoon Han, Eunji Lee, and Choong-Wan Woo. "When Self Comes to a Wandering Mind: Brain Representations and Dynamics of Self-Generated Concepts in Spontaneous Thought." *bioRxiv*, 2021.

C. O'Callaghan, J. Shine, S. Lewis, J. Andrews-Hanna, and M. Irish. "Shaped by Our Thoughts – A New Task to Assess Spontaneous Cognition and Its Associated Neural Correlates in the Default Network." *Brain and Cognition*, 2015.

Christine A. Godwin, Ezequiel Morsella, and Mark W. Geisler. "The Origins of a Spontaneous Thought: EEG Correlates and Thinkers' Source Attributions," 2016.

I. Dumontheil, S. Gilbert, C. Frith, and P. Burgess. "Recruitment of Lateral Rostral Prefrontal Cortex in Spontaneous and Task-Related Thoughts." *Quarterly Journal of Experimental Psychology*, 2010.

K. Christoff, A. Gordon, J. Smallwood, Rachelle Smith, and J. Schooler. "Experience Sampling During fMRI Reveals Default Network and Executive System Contributions to Mind Wandering." *Proceedings of the National Academy of Sciences*, 2013.

of Sciences of the United States of America, 2009.

M. Girn, Caitlin Mills, Eric Laycock, Melissa Ellamil, L. M. Ward, and K. Christoff. “Neural Dynamics of Spontaneous Thought: An Electroencephalographic Study.” *Interacción*, 2017.

Melissa Ellamil, K. Fox, Matthew L. Dixon, Sean Pritchard, R. Todd, Evan Thompson, and K. Christoff. “Dynamics of Neural Recruitment Surrounding the Spontaneous Arising of Thoughts in Experienced Mindfulness Practitioners.” *NeuroImage*, 2016.

P. McGuire, E. Paulesu, Richard S. J. Frackowiak, and C. Frith. “Brain Activity During Stimulus Independent Thought.” 1996.

Rachelle Smith, K. Keramatian, J. Smallwood, J. Schooler, Brian Luus, and K. Christoff. “Mind-Wandering with and Without Awareness: An fMRI Study of Spontaneous Thought Processes,” 2006.

T. Raij, T. Raji, and T. Riekki. “Dorsomedial Prefrontal Cortex Supports Spontaneous Thinking Per Se.” *Human Brain Mapping*, 2017.